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Structures of Metallocarboranes. VI. A Titanium 
Sandwich Complex. Crystal and Molecular Structure of 
[(CH3)4N]2{[l,6-C2B,oH,o(CH3)2]2Ti!, 
Bis(tetramethylammonium) 
4,4'- commo -Bis(decahydro- 1,6-dimethyl-1,6-dicarba-
4-titana-c/oso-tridecaborate)(2—) at - 1 6 0 0 1 

Sir: 

The preceding communication2 reported the synthesis 
and spectral properties of the first metallocarboranes which 
incorporate group IVa (Ti, Zr) and group Va (V) metals in 
the polyhedral framework. We wish to report the crystal 
and molecular structure of one of these compounds, the bis-
(tetramethylammonium) salt of the commo titanacarborane 

anion |4,4'-Ti-[l,6-C2B,0Hio(CH3)2]2)2". 
A well-formed dark red crystal of the compound was 

mounted on a Syntex P l automated diffractometer 
equipped with a locally constructed low-temperature de­
vice3 and cooled to —160°. The complex was found to crys­
tallize in the centrosymmetric triclinic space group Pl (con­
firmed by successful refinement) with unit cell dimensions a 
= 13.412 (3) A, 6 = 9.325 (2) A, c = 16.781 (5) A, a = 

Table I. Bond Distances in the Metallocarborane Polyhedra" 

D D' Dc 

M-Cl 
M-B2 
M-B3 
M-C6 
M-B7 
M-BlO 
C l - C M l 
C1-B2 
C1-B3 
C1-B5 
B2-B5 
B2-C6 
B2-B9 
B3-B5 
B3-B7 
B3-B8 
B5-B8 
B5-B9 
B5-B11 
C6-CM6 
C6-B9 
C6-B10 
C6-B12 
B7-B8 
B7-B10 
B7-B13 
B8-B11 
B8-B13 
B9-B11 
B9-B12 
B10-B12 
B10-B13 
B11-B12 
B11-B13 
B12-B13 

2.176(5) 
2.408(6) 
2.420(6) 
2.471 (5) 
2.433 (6) 
2.338(7) 
1.518(7) 
1.564(8) 
1.589(8) 
1.769(8) 
1.990(9) 
1.652(8) 
1.778(9) 
1.995(9) 
1.769(9) 
1.783(9) 
1.918(9) 
1.866(9) 
1.810(10) 
1.546 (7) 
1.693(8) 
1.708(8) 
1.710(8) 
1.751 (8) 
1.757 (9) 
1.762(9) 
1.738(8) 
1.740 (9) 
1.732(9) 
1.749(9) 
1.798(8) 
1.795(9) 
1.781 (9) 
1.786(9) 
1.733 (9) 

2.185(5 
2.417(6 
2.406(7 
2.466(5 
2.430(7 
2.338(6 
1.540 (7) 
1.549 (8 
1.561 (8 
1.757(8 
1.992(S1 

1.687 (7 
1.791 (8 
1.978(9 
1.773(8 
1.801 (9 
1.909(9 
1.897 (9 
1.826(9 
1.532(7 
1.706(7J 
1.720(8 
1.713(8 
1.756(8 
1.762(9 
1.770(9 
1.744 (9 
1.750(9 
1.746(9 
1.738 (8 
1.798(9 
1.787(9 
1.766(9 
1.769(9 
1.727 (9 

2.032(4) 
2.199(6) 
2.203(4) 
2.150(3) 
2.165 (3) 
2.093 (3) 

1.429(10) 
1.527(6) 
1.775(6) 
2.081 (10) 
1.694(7) 
1.818 (7) 
1.947(6) 
1.813 (5) 
1.792(5) 
1.881 (6) 
1.865(6) 
1.787(5) 

1.686(5) 
1.708(5) 
1.665 (4) 
1.786(6) 
1.881 (6) 
1.785(5) 
1.741 (5) 
1.770(5) 
1.733(6) 
1.720(6) 
1.802(5) 
1.783 (6) 
1.773 (5) 
1.789(5) 
1.788(5) 

" D and D' are bond distances in the two independent polyhedra 
of the titanium complex and DQ are distances obtained by Churchill 
and DeBoer5 for the cobalt complex. 

95.21 (2)°, 0= 106.15 (2)°,and-y = 81.55 (2)°. The mea­
sured density of 1.19 (3) g cm _ 3 a t 25° corresponds to a 
calculated density at —160° of 1.096 g cm - 3 . The unit cell 
contains two molecules of the acetone-solvated compound 
[(CHj)4N]2)Ti[C2B,0H IO(CH3)2]2|-2(CH3)2CO. 

A total of 3214 reflections (Mo Ka radiation) with inten­
sities greater than three times their standard deviations 
were used in the solution and refinement of the structure. 
Conventional Fourier and least-squares techniques have re­
sulted in R =0.056, R„ = 0.059.4FuIl details of the refine­
ment procedure will be discussed in a subsequent manu­
script. 

The compound is comprised of two 13-vertex closed poly­
hedra fused through the titanium atom, with cations and 
solvent molecules positioned in sites between the large an­
ions. The geometry of the anion is depicted in Figure 1, 
which also indicates the numbering system employed. 

The observed structure of the 13-vertex polyhedra is sim­
ilar to that determined by Churchill and DeBoer5 in the 
neutral cobaltacarborane C S H S C O C 2 B I O H ] 2 in that the 
metal atom occupies high-coordinate vertex positions. The 
Ti-C and Ti-B bonds are much longer than their analogs in 
the cobalt complex; Ti-C averages 2.181 (5) A (to the low-
coordinate carbon atoms) and 2.468 (5) A (to the high-
coordinate carbon atoms), while Ti-B averages 2.399 (6) A. 
The overall geometries of the two independent polyhedra 
are identical within experimental error but differ signifi­
cantly from the cobalt-containing polyhedron (Table I). 

Specifically, extremely long boron-boron bonds between 
the high-coordinate boron atom 5 and boron atoms 2 and 3 
(B5-B2 = 2,081 (10) and B5-B3 = 1.947 (6) A vs. a nor-
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Figure 1. Molecular geometry of the titanacarborane dianion. 

mal icosahedral B-B distance6 of 1.78 A) were observed in 
the structure of the cobaltacarborane. This pattern is also 
observed in the titanacarborane studied here, the average of 
these two distances being 1.989 (9) A, but the sizable 0.134 
A difference between the two bonds detected by Churchill 
and DeBoer is not present here; the maximum difference 
between the four bonds is 0.017 A in the titanacarborane. 
Similarly, the difference in the short B-C distances in the 
cobaltacarborane (C1-B3 = 1.527 (6), C1-B2 = 1.429 
(10) A) is in the case of the titanacarborane much less 
(C1-B3 = 1.589 (8), 1.561 (8); C1-B2 = 1.564 (8), 1.549 
(8) A). The long B7-B10 bond length of 1.881 (6) A ob­
served in the cobaltacarborane corresponds to boron-boron 
distances of 1.757 (9) and 1.762 (9) A in the titanium com­
plex. In general, the titanacarborane polyhedra show less 
distortion from "normal" bond distances and less deviation 
from a symmetric structure, than does the cobaltacarbo­
rane. 

While the metal-carbon and metal-boron bonds in the ti­
tanacarborane are considerably longer than those observed 
in the cobaltacarborane, the coordination geometries in the 
two complexes are similar. In each case the low-coordinate 
carbon atom, Cl, exhibits a short metal-carbon distance, 
and the boron atom opposite Cl on the six-membered B4C2 
ring, BlO, is the next nearest neighbor of the metal. The 
other four atoms of the B4C2 rings have longer and roughly 
equal distances to the metal atom. The five-member boron 
rings in the titanium polyhedra are planar within experi­
mental error even though long bonds to the high-coordinate 
B5 atom result in a large deviation from fivefold symmetry. 

The coordination geometry of the formally d2 titani-
um(II) atom in this compound is of particular interest since 
monomeric titanocene, the isoelectronic cyclopentadienyl 
analog of this titanacarborane, has not been isolated. At 
least two compounds with the stoichiometry (CioHioTi)2 
have, however, been identified. Marvich and Brintzinger7 

have characterized a metastable compound to which they 
assign the ((V-CsHs)2Ti)2 structure. This compound ther­
mally rearranges to form a green isomer which has been 
identified by Davison and Wreford8 on the basis of 13C nmr 
as /Li-(?75:7;5-fulvalene)-di-ju-hydrido-bis(cyclopentadienylti-
tanium). In these two dimeric isomers the titanium atoms 
achieve 15- and 16-valence electron configurations, respec­

tively, while the titanacarborane and monomeric titanocene 
are both 14-electron systems. 

Steric constraints have been postulated to explain the 
lack of dimerization of permethyltitanocene,9-10 

(V-Cs(CHa)5J2Ti. This species is only marginally stable 
and exists in solution in tautomeric equilibrium with the 
isomeric complex [C5(CH3)5] [C5(CHs)4CH2]TiH; this 
process involves ring methyl hydrogen abstraction and con­
sequent internal oxidative addition to produce a 16-electron 
configuration about the metal. A similar electronic configu­
ration is present in the distorted tetrahedral 
(C5Hs)2TiCl2.

11 

The titanium atom in the metallocarborane is sand­
wiched between roughly parallel (dihedral angle between 
best least-squares planes 6.1°) six-membered rings and ex­
hibits no significant distortion toward a structure in which 
the two ligands are "bent back" to present sufficient room 
for a donor molecule to approach. The long distances be­
tween the titanium and the cage atoms would facilitate such 
a bending without producing unfavorable interactions be­
tween hydrogen atoms on the two independent polyhedra, 
but the molecule shows no inclination to adopt such a con­
figuration. The acetone molecules of solvation present in 
the crystal are distant from the metal center. 

This compound represents another example of an elec­
tron-deficient metallocarborane and shows the largest 
amount of electron deficiency yet observed. Other crystallo-
graphically studied molecules of this type are the 
(C2BgH] O2Cr(III) monoanion,12 formally a 15-valence 
electron compound, which exhibits a symmetrical sandwich 
structure,13 and (C5Hs)2Fe2C2B6Hs, which exhibits a large 
distortion from the idealized polyhedral geometry expected 
for this ten-vertex system.1 Electron-rich metallocarboranes 
appear to show a preference for "slipped sandwich" struc­
tures,14 but at this stage little can be said about any system­
atic geometric effects of electron deficiency in metallocar­
boranes. 
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